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Received 16 March 2000

Abstract. A new statistical model has been developed in the framework of Phase Space Theory to describe
the evaporation process of non-rotating clusters. The novelty of the theoretical approach resides in its
ability to easily separate the total kinetic energy released in an evaporation process into the rotational and
translational contributions. This new model has been tested by comparing its predictions with the results
of Molecular Dynamics (MD) simulations for the unimolecular evaporation of two types of van der Waals
clusters: the aniline-(argon)n molecular clusters and the neat argon Arn clusters.

PACS. 36.40.Ei Phase transition in clusters – 82.20.Db Statistical theories (including transition state)

1 Introduction

During the last decade many experimental and theoretical
studies, devoted to the physics and chemistry of clusters,
have considerably improved our understanding of their in-
timate dynamical behaviour. Some new and fascinating
concepts, such as the solid-liquid like transition and the
dynamical coexistence in finite size systems, have been
proposed [1–4]. These phase transitions in such small sys-
tems, initially characterized from changes and fluctuations
of structural parameters, have been clearly analyzed from
a thermodynamical point of view first by Labastie and
Whetten [5] in pure Arn clusters. They have been recently
observed experimentally in the case of Nan metal clus-
ters [6]. More generally, the relationship between struc-
ture, dynamics and thermodynamics in homogeneous or
inhomogeneous clusters has been explored [7].

From the theoretical point of view, most of the effort
has been focussed on the study of van der Waals (vdW)
clusters since simple and reliable interaction potentials can
be used. In these vdW systems, interesting experimen-
tal informations have been collected on the evolution of
the chemical and physical properties of a molecular chro-
mophore as a function of the number of atomic species
which are bound around it. As an example, the aromatic-
rare gas systems have been extensively studied [8–12]. Un-
fortunately, no experimental unambiguous proof of phase
transition has been found yet in vdW clusters.

The direct connection between phase transition and
the microcanonical density of states has stimulated Amar
and Weerasinghe [13] to analyse the evaporation pro-
cess from both molecular dynamics (MD) simulations and
phase space theory (PST). In this statistical approach,
the evaporation rate and the average kinetic energy re-
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lease can be directly calculated from the densities of states
of the reactant and of the product clusters. It has been
clearly demonstrated, both in their work [13] and in a sub-
sequent work by ourselves [14], that the phase transition
in the product clusters has an influence on the energet-
ics and on the dynamics of the unimolecular process. It
could open the route to new experiments in which the ki-
netic energy release will be measured as a function of the
internal energy deposited in the parent cluster.

A direct comparison between experimental results and
theoretical predictions could then be possible if the mean
rotational energy of the sub-cluster can be evaluated.
Indeed, in a typical experiment, only the translational ki-
netic energy of the fragments will be measured. Unfortu-
nately, in the PST formalism, only the total kinetic energy
is calculated. No information on the partition of the re-
lease energy between the two kinds of external degrees
of freedom (translation and rotation) in the exit channel
is available. In this paper, we propose as an extension of
the PST formalism a theoretical approach which enables
to fully characterize this energy partition in the case of
non-rotating parent clusters, through the rotational and
translational energy distributions functions.

The main features of this approach, including the
necessary approximations and its predictive character,
have been tested by using as a benchmark the results of
MD simulations, performed separately on two well-studied
vdW systems: the aniline-(argon)n clusters and the neat
argon Arn clusters. However, a major interest of such a
statistical model, as opposed to MD simulations, is its
faculty to match the characteristic lifetime of evaporating
clusters in actual experiments, as it has previously been
stressed [14].

This paper is divided into two main sections. In
Section 2, the new statistical model to calculate the trans-
lational and rotational contributions in the evaporation
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process is presented. In Section 3, a comparison is made
between the results obtained from this statistical model
and from MD simulations in the case of the evaporation
of aniline-Arn clusters and of neat Arn clusters.

2 The new statistical model

2.1 Phase space theory frame

The statistical approach known as PST has been first de-
veloped for reactive collisions by Light [15,16] and then
used for describing the unimolecular processes in highly
energetised molecules by Klots [17]. In warm van der
Waals clusters, this method has shown its ability to give
reliable values of the mean kinetic energy release (KER)
and of the unimolecular evaporation rate. In particular
the evolution of the evaporation rate and of the KER as
a function of the internal energy of the parent cluster was
found in good agreement with MD results in the case of
Arn clusters [13] and of aniline-Arn clusters [14]. In the
PST formalism for evaporation, the transition state is con-
sidered as the ensemble of the product cluster and the
separated atom (loose state theory) and the key function
is the differential rate R(ε;E) given by:

R(ε;E) =
1
h

ω(TS)(E −E0 − ε)
ω(r)(E)

(1)

h is the Planck’s constant. E0 corresponds to the energy
difference between the transition state and the reactant. ε
is the total kinetic energy released in the reaction. ω(r) and
ω(TS) are respectively the densities of states associated to
the reactant and to the transition state.

Separating the vibrational coordinates from the exter-
nal degrees of freedom at the transition state, the differ-
ential rate R(ε;E) can be rewritten as:

R(ε;E) =
1
h

ωrt(j = 0, E)ω(p)
v (E −E0 − ε)

ω(r)(E)
· (2)

In this last expression ωrt(j = 0, E) corresponds to the
recoil translational and rotational density of states and
ω

(p)
v (E − E0 − ε) corresponds to the vibrational density

of states of the product cluster. j = 0 is a recall that the
parent cluster is not rotating. This expression can be used
with benefit to calculate the evaporation rate constant:

ke(E) =
∫ E−E0

0

R(ε;E) dε (3)

and the average KER:

〈ε〉 =
∫ E−E0

0

εR(ε;E) dε
/∫ E−E0

0

R(ε;E) dε (4)

if some approximate behaviour of ωrt(j = 0, E) is taken
into account.

We have shown in a previous article [14] that this
“external” density of states is proportional to the total

KER ε to a good approximation. Indeed, following the
work of Chesnavich and Bowers [18], it can be shown that
ωrt(j = 0, E) is proportional to J2

max, Jmax being the max-
imum value of the angular momentum for the product
cluster. This proportionality has been obtained in the case
of a non-rotating reactant cluster (j = 0) and by consid-
ering the cluster as a sphere-atom system and by applying
the constraints linked to the energy and angular momen-
tum conservation in the separation process.

On the other hand, J2
max can be approximately con-

sidered as proportional to the total KER ε. We have
shown [14] that the maximum value of the sub-cluster ro-
tational energy ε

(max)
rot is related to the maximum value

Rmax of the interfragment distance by the following
expression:

ε
(max)
rot =

1

1 +
µ

2BM2R2
max

ε (5)

in which µ is the reduced mass of the (sub-cluster–atom)
system, and B corresponds to the mean rotational con-
stant for the sub-cluster.

This last expression can be now simplified by express-
ing the mean rotational constant B of the product cluster
as B = [2 (n − 1)MArR

2
sc]−1. This relation can be con-

sidered as a definition of Rsc, which can be viewed as a
typical “inertial” size of the sub-cluster. Typical values of
Rsc can be evaluated from the calculation of the structure
of the most stable isomer. As µ/MAr = Mn−1/Mn and by
calling αn = Rmax/Rsc, equation (5) can be rewritten as:

ε
(max)
rot =

1

1 +
(n− 1)Mn−1

α2
nMn

ε = γnε (6)

by introducing

γn =
1

1 +
(n− 1)Mn−1

α2
nMn

which can be viewed as a purely inertial factor.
We have to note that this linearity is not rigorous. In

fact, the relation between Jmax and ε should be extracted
from the relationship:

ε
(max)
rot = ε− ε∗ (7)

in which ε∗ corresponds to the height of the centrifugal
barrier. Our assumption of linearity is then directly linked
to the proportionality of ε∗ with ε. The direct consequence
of the linearity between ε

(max)
rot (and consequently J2

max)
and ε is that the evaporation rate constant ke(E) and the
mean total kinetic energy release 〈ε〉 can be extracted from
a simple integration on only one variable, namely ε, by:

ke(E) ∝
∫ E−E0

0 εω
(p)
v (E −E0 − ε) dε

ω
(r)
v (E)

(8)
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and

〈ε〉 =

∫ E−E0

0
ε2ω

(p)
v (E − E0 − ε) dε∫ E−E0

0 εω
(p)
v (E −E0 − ε) dε

· (9)

However the application of such a PST formalism does
not bring any information about the relative input of the
released kinetic energy into the two contributions (rota-
tional kinetic energy of the sub-cluster and relative trans-
lational kinetic energy). An alternative description to pre-
cisely obtain this information on the energy sharing in the
exit channel is proposed in the next sub-section. Before
describing it, we have to note that some other theoretical
approaches exist to describe the unimolecular dissociation
of an ensemble of atoms. The RRK theory [19,20] is nat-
urally one of the most popular in particular due to the
simple analytic expressions obtained from this approach.
Marcus [21] has proposed an evolution of this model by us-
ing the concept of transition state [22]. Another interesting
model has been proposed more recently by Engelking [23].
In fact the predictions of this last model can be found from
the present PST formalism by using harmonic density of
states and by assuming the linearity of J2

max as a function
of the total kinetic energy ε.

2.2 Explicit forms of the rotational and translational
distributions

If we consider explicitly the density of states of the tran-
sition state as the product of the vibrational density of
states of the (n − 1) cluster, the rotational density of
states of the (n − 1) cluster and the translational part,
the probability to obtain the rotational energy in the in-
terval [εrot; εrot +dεrot[ and the relative translation energy
in the interval [εtr; εtr + dεtr[ can be written as:

P (εrot, εtr;E) = f(εtr, εrot;E) dεtr dεrot

=
ω

(p)
v (E −E0 − εtr − εrot)ωr(εrot)ωt(εtr) dεtr dεrot∫

dεrot

∫
ω

(p)
v (E −E0 − εrot − εtr)ωr(εrot)ωt(εtr) dεtr

·

(10)

In this expression the only vibrational density of states in-
volved is that of the product ω(p)

v but the difficulty comes
from the evaluation of the ωt and ωr functions. However
we are going to show that analytic expressions can be eas-
ily derived.

If we consider the sub-cluster as spherical, the inter-
molecular potential depends only on the distance between
the separating atom and the center of mass of the sub-
cluster. Consequently the configuration of the transition
state of the sub-cluster–atom system does not depend on
the orientation of this system in space but only on the
distance, RTS. At a given RTS, the rotational angular mo-
mentum of the sub-cluster Jsc is in the plane perpendic-
ular to RTS, the latter connecting the evaporating atom
and the center of mass of the sub-cluster. Indeed, as we
only consider non-rotating parent clusters (j = 0), Jsc

is colinear to the angular momentum of the evaporating
atom Je and then perpendicular to RTS. Consequently we
have to calculate the density of states of a 2D free rotor
defined by a rotational constant B. This density of rota-
tional states will be proportional to ε

g/2−1
rot where g (=

2 in this case) corresponds to the number of degrees of
freedom. Thus we find a very simple result:

ωr(εrot = BJ2
sc) = const. (11)

If we decompose now the linear momentum of the sepa-
rating atom as the sum of its perpendicular and parallel
to RTS components

(
P = P(⊥) + P(‖)) then εtr = C +

P(‖)2/2µ in which C = P(⊥)2/2µ. By taking u = εtr − C,
we obtain u = P(‖)2/2µ and this expression can be viewed
as the kinetic energy in a one dimensional problem for
a particle whose mass is equal to µ. When Jsc is given,
the perpendicular component of P is fully determined and
then C is a constant. Consequently the translational den-
sity of states is proportional to u−1/2 and can be writ-
ten as:

ωt(εtr) ∝ (εtr −Kεrot)
−1/2 (12)

in which the K constant is given for parent cluster of
size n by:

Kn =
(n− 1)Mn

Mn−1β2
n

(13)

where βn is the distance ratio RTS/Rsc.
As, in the case of vdW clusters, long range interactions

are involved in the dissociation process, we can consider,
in a first approximation, RTS � Rsc in which Rsc cor-
responds to the mean size of the sub-cluster. Then Kn

becomes very small (βn very large). If we neglect it versus
εtr, equation (10) can then be rewritten as:

P (εrot, εtr;E) =

ω
(p)
v (E −E0 − εtr − εrot)ε

−1/2
tr dεtr dεrot∫ ε0

0
dεrot

∫ ε2
ε1
ω

(p)
v (E −E0 − εtr − εrot) ε

−1/2
tr dεtr

· (14)

In this last expression, the values for the bounds ε0, ε1
and ε2 are linked to energy conservation constraints in-
duced by relations between translational and rotational
contributions.

As ε is smaller than (E−E0) and by using equation (6),
the maximum value taken by the rotational energy will be:

ε0 = γn(E −E0). (15)

From equation (6), we have εrot ≤ γn(εrot + εtr). Conse-
quently we obtain that εtr is larger than (1− γn)εrot/γn.
As ε1 is defined as the minimum energy value taken by
the translational kinetic energy for a given value of the
rotational contribution εrot, it can be deduced:

ε1 =
1− γn
γn

εrot · (16)
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Finally ε2 is defined as the maximum value taken by the
translational energy for a given value of the rotational
energy εrot. As εtr + εrot ≤ E −E0, we directly find:

ε2 = E −E0 − εrot. (17)

The probability P ′ (εrot;E) to obtain the rotational ki-
netic energy between εrot and εrot + dεrot at a given value
of E can be calculated by summing over εtr:

P ′ (εrot;E) = g (εrot;E) dεrot =
∫ ε2

ε1

f (εrot, εtr;E) dεtr.

(18)

From this last equation, the mean rotational energy for a
fixed value of the total energy E can be directly obtained
by integrating over all the values of the rotational energy:

〈εrot〉(E) =
∫ ε0

0

εrotg(εrot;E) dεrot. (19)

Following the same procedure, the probability P ′′ (εtr;E)
to obtain the translational kinetic energy between εtr and
εtr + dεtr at a given value of E can be calculated by sum-
ming over εrot:

P ′′ (εtr;E) = h (εtr;E) dεtr =
∫ ε3

0

f (εrot, εtr;E) dεrot

(20)

with ε3 = min (γnεtr/(1− γn), E −E0 − εtr).
Finally the mean translational energy can be directly

obtained from the h(εtr;E) function by the following in-
tegral:

〈εtr〉(E) =
∫ E−E0

0

εtrh(εtr;E) dεtr. (21)

As a final remark it should be emphasized that explicit cal-
culations of these mean values and distribution functions
for εrot and εtr for a given system only need the knowledge
of γn (which enters in the definition of ε1, ε3) or equiva-
lently of αn (see Eq. (7)) and of the vibrational density of
states of the product cluster (to inject in Eq. (14)).

We will see in the test case studies presented in
Section 3 how the inertial factor γn can be evaluated. The
microcanonical density of states ω(p)

v (E) can be extracted
to within a multiplicative factor from the multiple his-
togram method [5,24] after running canonical Nosé sim-
ulations [25] at different temperatures. Such simulations
provide set of values for the probability PT (E) to obtain
the energy E in the interval [E;E+∆E[. This probability
is linked to the classical microcanonical density of states
ω

(p)
v (E) by:

PT (E) =
ω

(p)
v (E)e−E/kBT∆E

Z(T )
(22)

in which kB is the Boltzmann constant and Z(T ) the parti-
tion function. And inversion of this formula gives ω(p)

v (E)

to within an arbitrary multiplicative constant. We have
to note that the calculation of the mean total kinetic en-
ergy (see Eq. (9)) and the mean rotational and transla-
tional kinetic energy release from the statistical model (see
Eqs. (19, 21)) does not depend on this constant.

3 Results of test studies and discussion

We have applied the above formalism to characterize
the evaporation processes in the vdW clusters aniline-
(argon)n with n = 6–14 and (argon)n with n = 8–14 as
a function of the initial parent internal energy. An ade-
quate database to be used as a reference has been built
by running MD simulations on the same cluster systems.

3.1 Procedures in MD simulations

Classical MD trajectories were generated by numerical
integration of the Hamilton equations, using a fourth
and fifth order Adams-Moulton predictor corrector respec-
tively for the translational and rotational degrees of free-
dom. The typical time step for the integration scheme was
equal to about 5 fs and the corresponding energy con-
servation was equal to around 0.001%. For the molecu-
lar cluster aniline-Arn cluster, the aromatic chromophore
has been kept rigid and its rotation in space has been
described from the usual quaternion formalism [26]. The
vdW potential was built as a sum of pairwise atom-atom
Lennard-Jones potentials. For the aniline-Arn clusters,
the parametrisation for the atom-atom potentials can be
found in previous papers [10,27]. For the pure Arn clus-
ters, we have used the Lennard-Jones parameters gener-
ally adopted, i.e. σ = 3.405 Å and ε = 83.26 cm−1.

The numerical scheme for the simulation of the dis-
sociative trajectories has also been explained in previous
papers [14,28]. Only a rapid description will be given here.
At a given dissociation energy, a set of about 3 000 inde-
pendent trajectories were used in order to obtain some
confident statistical results. These trajectories were gen-
erated from initial conditions extracted from a MD simu-
lation at lower energy (the corresponding kinetic temper-
ature was equal to about 30 K). The parent cluster was
considered as dissociated when one Ar atom was found at
a distance from the center of mass of the whole system
larger than 20 Å. The evaporation time was taken equal
to the last time for which the radial velocity of the evapo-
rated atom was negative, this procedure allowing to min-
imise the velocity effect on the calculation of the evapora-
tion time. The evaporation rate was easily deduced from
this set of trajectories by fitting the results to a first-order
law (which governs the evaporation process in the classical
approach). At the end of each dissociative trajectory, the
release kinetic energy ε was obtained from the calculation
of the two contributions.

First of all, the KER εtr is directly given by:

εtr =
P2

Ar

2µ
(23)



P. Parneix and Ph. Bréchignac: Rotation/translation interplay in the recoil statistics of cluster evaporation 47

0 20 40 60 80
ε (cm

−1
)

0

20

40

60

80

ε ro
t(m

ax
)  (

cm
−

1 )

MD results
α8 = 6.00
α8 = 3.50
α8 = 1.00

Fig. 1. The maximum value of the rotational energy release

ε
(max)
rot as a function of the total kinetic energy release ε. The

open circles correspond to the MD results. Three straight
lines are reported with different values for the α8 parameter
(see text).

in which PAr corresponds to the linear momentum of the
evaporated Ar atom and µ is the reduced mass of the
system (sub-cluster)–Ar.

The second contribution to the total kinetic energy
release is the rotational energy of the sub-cluster. Due to
the conservation of the total angular momentum in the
dissociation process, and to the choice of a non-rotating
parent cluster, the angular momentum of the sub-cluster
(Jsc) is given by:

Jsc = −MAr

µ
JAr (24)

in which JAr is the angular momentum of the parent clus-
ter and the evaporated Ar atom. Knowing Jsc and the
inertia tensor Ĩsc of the sub-cluster (calculated at the geo-
metrical criterion), the rotational energy εrot can be easily
obtained by:

εrot =
1
2
Jsc ·

(
Ĩ−1
sc Jsc

)
. (25)

Mean values were obtained by ensemble average over the
set of trajectories.

3.2 Test of the assumptions

As explained in the previous section, the mean kinetic
energy values (Eqs. (9, 19, 21)) but also the densities of
probability (Eqs. (18, 20)) are obtained by making the as-
sumption of the linearity of ε(max)

rot as a function of the total
kinetic energy ε. This assumption has been tested by MD
simulations. In Figure 1 is plotted ε(max)

rot as a function of ε
in the case of the non-rotating aniline-Ar8 parent cluster
at a vibrational energy equal to 960 cm−1. Open circles
corresponds to the MD results and the three straight lines
corresponds to the linear fit with different values of α8.
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Fig. 2. (a) α8 as a function of E/n in the case of the Ar8 parent
cluster; (b) αn as a function of the number n of Ar atoms in
the case of a pure vdW Arn cluster at E/n = 120 cm−1. All
data are extracted from MD results.

First of all, the linearity of ε(max)
rot = f(ε) is well verified

in this vdW system. In the pure Arn cluster (not shown
here), the linearity is also a good approximation. The sec-
ond point to note is that such MD simulations allow to
obtain the value of αn which is the only parameter, apart
from vibrational densities of states, needed for the cal-
culation of the rotational and translational distributions
as a function of the parent total energy. However another
assumption was to consider the slope of this curve as con-
stant when the energy E, deposited in the parent clus-
ter, was changed. In Figure 2a the value of α8 has been
reported for five different internal energies in the parent
cluster Ar8. On this plot it appears that this value is ef-
fectively almost constant and equal to 4.0± 0.2 (the un-
certainty was deduced from that on the slope γn of the
ε
(max)
rot = f(ε) curve).

The sensitivity of this parameter to the cluster size has
also been explored (see Fig. 2b) from n = 6 to n = 14, and
found small. Thus αn appears as a very useful parameter
whose value is rather robust. Physically it corresponds to
the fact that when the evaporating atom is at a distance
from the center of mass of the sub-cluster which is four
times larger than the cluster radius, the fragments should
be considered as fully separated. This maximum distance
to locate the transition state seems quite reasonable in
view of the smallness of the atom-sub cluster interaction
in such a configuration.

As shown above it is easy to extract from MD simula-
tions the value of αn at high energy, i.e. the energy range
for which the evaporation dynamics is fast enough to ob-
tain confident statistical results. We are going to assume
that this value is unchanged in the lower energy regime
for which MD simulations cannot be used, but the evapo-
ration dynamics can be characterized with the statistical
model proposed in this paper.
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Fig. 3. (a) Mean kinetic energy (open squares -MD- and up-
per curve) and mean rotational energy (open circles -MD- and
lower curves) as a function of E/n in the case of the aniline-Ar8

parent cluster; in (b) the harmonic model predictions for the
mean rotational energy have been added in the dotted line.

3.3 Rotational and translational kinetic energy release

3.3.1 Aniline-Ar8 cluster

The density of states of the aniline-Ar7 cluster product
has first been calculated from running Nosé trajectories
(see end of Sect. 2). The mean total KER 〈ε〉 has then
been extracted from the calculation of the density of states
of the product clusters and from equation (9). On the
other hand the mean rotational energy 〈εrot〉 has been de-
duced from equation (19) using the vibrational density
of states ω(p)

v of the aniline-Ar7 product cluster and the
value α8 = 3.50 of the αn parameter which is obtained
from MD simulations as explained above (see Fig. 1). In
Figures 3a and 3b the results (MD simulations and statis-
tical model) are displayed in the case of the evaporation
of the aniline-Ar8 cluster. In Figure 3a are reported first
the MD results for the mean total kinetic energy 〈ε〉 (open
squares) and for the mean rotational contribution (open
circles). The dotted line corresponds to the calculation of
〈ε〉 from equation (9). The three other curves correspond
to the calculation of 〈εrot〉 with different values of the α8

parameter: 1.00, 3.50 and 6.00. It is remarkable that a
very good agreement is found when α8 = 3.50 which is in
fact the value obtained from the fit of ε(max)

rot as a function
of ε (see Fig. 1). It indicates that the statistical model
allows to reproduce the mean rotational energy quantita-
tively. In particular, it can be predictive in the low energy
regime and thus bring quantitative informations in the
energy range for which the evaporation time is in the mi-
crosecond domain. In Figure 3a, it can also be seen that

50 100 150
E/n (cm
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)
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15

<
ε ro

t>
 (
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−

1 )

Fig. 4. Mean rotational energy for the Ar14 parent cluster.
The open circles correspond to the MD simulations. The three
curves are obtained from the statistical model with α14 = 3.4
(long dashed line), 3.6 (solid line) and 3.8 (dotted line).

the model predicts a non-linearity of 〈εrot〉 as a function
of the internal energy. This effect, which appears around
E/n = 120 cm−1, is a direct consequence of the phase
transition in the product aniline-Ar7 cluster, as discussed
in a previous paper [14].

We have also analysed the role of the anharmonicity
in the quality of the agreement between MD results and
the statistical model. Figure 3b shows the same results us-
ing an expanded scale, and we have added the predictions
of the harmonic model (dotted line) by taking α8 = 3.50
in the both cases. As expected in the low energy regime,
the anharmonic and harmonic models predict the same
value. On the other hand at higher energy and in particu-
lar above the energy associated to the phase transition in
the product cluster, a large discrepancy between the two
models is found which demonstrates the necessity to take
the anharmonicity into account in the statistical models
describing the dissociation processes. Obviously the har-
monic model gives a linear dependence of 〈εrot〉 as a func-
tion of the internal energy in the parent cluster.

3.3.2 Homogeneous argon clusters

The density of states of the Ar13 cluster has been thor-
oughly studied. Thus we choose the parent cluster Ar14

which evaporates into Ar13 + Ar. In Figure 4 is shown
the evolution of the mean rotational energy for the Ar14

parent cluster. The value of α14 has been extracted from
the fit of the ε(max)

rot curve as a function of ε as explained
above and given in Figure 2a. From this procedure, we
have found α14 = 3.6± 0.2. Consequently, the statistical
model has been applied with three values of α14 within
these limits: α14 = 3.4, 3.6 and 3.8. It clearly appears
that the MD results are well reproduced by the model.
In the same graph, it is also seen that the evolution of
〈εrot〉 as a function of the energy in the parent cluster is
strongly altered around the phase transition in the Ar13

product cluster (around E/n = 100 cm−1). A similar be-
haviour has already been characterized for the evolution
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of the total kinetic energy release in the evaporation pro-
cess [13,14].

3.3.3 General remarks and distributions functions

The statistical model proposed in this paper allows to cal-
culate the fraction of the KER devoted to the rotational
excitation of the sub-cluster. If we analyse this fraction
as a function of the energy for a given cluster size, we
see that it slowly decreases as a function of the energy
which is well reproduced by the statistical model. If now
we look at the evolution of this fraction as a function of
the cluster size for a given E/n, a clear decrease of this
quantity is observed in the MD simulations when the num-
ber of Ar atoms increases. For the pure Arn clusters, we
obtain 〈εrot〉/ (〈εrot〉+ 〈εtr〉) = 0.33, 0.29 and 0.25 respec-
tively for n = 8, 11 and 14 at E/n = 120 cm−1. Then
for the small clusters, it is a large part of the energy re-
lease which is taken by the rotation of the sub-cluster.
This point has to be carefully considered in particular in
experiments which access the translational kinetic energy
of the fragments. We suggest that the theoretical frame-
work proposed in this paper can be usefully considered in
kinetic energy experiments.

If we analyse now the mean translational energy de-
rived from the model, it appears that this quantity is in
fact underestimated when compared with MD results. We
can relate this to the approximation Kn = 0, since the
translational kinetic energy tends to increase when Kn is
increased (see Eq. (12)). If we include a non-zero value of
Kn to get a better agreement between the mean values
〈εtr〉 and 〈εrot〉 from the model and from MD results, it
is possible to derive a “best fit” value for the distance ra-
tio βn (see Eq. (13)). We found that βn is always equal
to about 3.0–3.5 in this range of cluster size (n ≈ 10).
In a pure atomic cluster, the cluster size Rsc of the prod-
uct cluster can be approximated by Rsc = r0(n− 1)1/3 in
which 2r0 is taken as the equilibrium distance between two
atoms (= 21/6σ in a van der Waal cluster). The mean dis-
tance for the location of the transition state, RTS, can be
expressed as Rsc+Ar0. In the case of the Ar14 parent clus-
ter, we found β14 = 3.35 which corresponds to A = 5.7.
The value of β14 indicates that the transition state is lo-
cated at a distance of about 5.5r0 from the surface of the
spherical sub-cluster.

With this value of β14 we obtained the energy distribu-
tions plotted in Figure 5 making use of equations (19, 21).
Also plotted are the MD results and the distributions de-
rived within the Kn = 0 approximation. The overall agree-
ment is fairly good, but – as expected – the translational
distribution is slighty better using Kn 6= 0. It is interest-
ing to remark the rather low energy-peaked shape of this
distribution.

As a final note it is of importance to stress that, apart
from the vibrational densities of states, only one param-
eter has to be injected in the model. It is the parameter
αn derived from the slope γn of the curve ε(max)

rot (ε) when
Kn = 0, it is replaced by the transition state distance
ratio βn when Kn 6= 0.
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Fig. 5. (a) Distribution of the sub-cluster rotational energy;
(b) distribution of the translational energy release in the case
of the Ar14 parent cluster at E/n = 140 cm−1. The dashed
lines correspond to the Kn = 0 approximation (see text); the
open circles to the MD results.

4 Conclusion

A novel extension of the phase space theory has been
proposed here in order to evaluate the energy partition
between the rotation of the remaining sub-cluster and
the translational kinetic energy release in the evaporation
process. This model has been successfully applied to the
aniline-Arn and to the Arn clusters. It allows to repro-
duce quantitatively the numerical results obtained from
molecular dynamics simulations. The ability of the model
to predict the low energy regime allows to calculate the
mean rotational energy of the sub-cluster in the energy
range for which the dynamics of dissociation is too slow
for estimations with MD simulations. A net “accident” in
the evolution of the mean rotational energy is seen around
the phase transition in the product cluster. Distributions
of the rotational and translational energies can be directly
extracted for any initial total energy in the parent from the
knowledge of the density of states of the product cluster
and by using a simple relation which gives the parameter
βn as a function of the cluster size. This last parameter,
which governs the boundaries in the integration over spe-
cific energies, involves the ratio between the critical “sep-
aration” distance (or transition state) RTS and the cluster
radius Rsc.

In the case of pure atomic clusters, a general empirical
law can be found for the evolution of the βn parameter as
a function of the cluster size. Indeed Rsc and RTS can be
evaluated by Rsc = r0(n−1)1/3 and by RTS = Rsc +5.5r0.
Consequently, the βn parameter is deduced from the
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relation βn = 1 + 5.5(n− 1)−1/3. Thus the model can be
easily used to calculate the translational and rotational
distributions of kinetic energy release resulting from the
evaporation of pure atomic clusters as soon as the vibra-
tional density of states of the product cluster can be eval-
uated. The validity of this relationship is expected to be
better for large clusters for which the cluster size Rsc is
relatively well reproduced by Rsc = r0(n− 1)1/3.

The foreseen interest of this model is to bring the
last missing link between theory of evaporation and ex-
periments: it is expected that experiments measuring the
translational kinetic energy release can be tested soon
against the predictions of this model.

The authors want to thank F.G. Amar for sending us the den-
sity of states for the Ar13 atomic cluster.
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